Efficient Variable Selection Method for Exposure Variables on Binary Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Method for Variables Selection Using SVM-Based Criteria

The problem of feature selection for Support Vector Machines (SVMs) classification is investigated in the linear two classes case. We suggest a new method of feature selection based on ranking scores derived from SVMs. We analyze the retraining effects on the ranking rules based on these scores. Our features selection algorithm consists in a forward selection strategy according to the decreasin...

متن کامل

On efficient calculations for Bayesian variable selection

We describe an efficient, exact Bayesian algorithm applicable to both variable selection and model averaging problems. A fully Bayesian approach provides a more complete characterization of the posterior ensemble of possible sub-models, but presents a computational challenge as the number of candidate variables increases. While several approximation techniques have been developed to deal with p...

متن کامل

Binary Regression With a Misclassified Response Variable in Diabetes Data

Objectives: The categorical data analysis is very important in statistics and medical sciences. When the binary response variable is misclassified, the results of fitting the model will be biased in estimating adjusted odds ratios.  The present study aimed to use a method to detect and correct misclassification error in the response variable of Type 2 Diabetes Mellitus (T2DM), applying binary ...

متن کامل

An Efficient Elastic Net with Regression Coefficients Method for Variable Selection of Spectrum Data

Using the spectrum data for quality prediction always suffers from noise and colinearity, so variable selection method plays an important role to deal with spectrum data. An efficient elastic net with regression coefficients method (Enet-BETA) is proposed to select the significant variables of the spectrum data in this paper. The proposed Enet-BETA method can not only select important variables...

متن کامل

Efficient Latent Variable Graphical Model Selection via Split Bregman Method

We consider the problem of covariance matrix estimation in the presence of latent variables. Under suitable conditions, it is possible to learn the marginal covariance matrix of the observed variables via a tractable convex program, where the concentration matrix of the observed variables is decomposed into a sparse matrix (representing the graphical structure of the observed variables) and a l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the Japanese Society for Artificial Intelligence

سال: 2007

ISSN: 1346-0714,1346-8030

DOI: 10.1527/tjsai.22.148